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Abstract

This paper presents two new iterative algorithms for decoding linear codes based

on their tall biting trellises, one is unidirectional and the other is bidirectional. Both

algorithms are computationally efficient and achieves virtually optimum error perfor-

mance with a small number of decoding iterations. They outperform all the previous

suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding

delay. Also presented in the paper is a method for constructing tail biting trellises for

linear block codes.
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1 Introduction

There are two types of trellis representation of codes, conventional trellis representation and

tail biting trellis representation. In conventional trellis representation of a code [1-3], the

code trellis has one starting state and one ending state, and the starting state and the ending

state are the same state. The paths connecting the starting state and the ending state give

all the codewords (or code sequences) of the code. In tail biting trellis representation of

a code, the code trellis has multiple starting states and multiple ending states [4-6]. Each

starting state has a unique corresponding ending state, and they are the same state. A path

in a tail biting trellis is a valid codeword if and only if it starts from a state and ends at the

same state. Such a path is called a tail biting path.

Tail biting trellis representation was first proposed by Solomon and van Tilborg [4] in

1979 for terminating the code trellis of a convolutional code without code rate loss. This tail

biting trellis representation of a convolutional code was later generalized by Ma and Wolf [5]

in 1986. Tail biting of a convolutional code results in a block code. Figure 1 depicts an 8-

section tail biting trellis with 4 starting states and 4 ending states for a rate-I/2 convolutional

code of memory order 2 with generator sequences gl = (1,0,1) and g2 = (1,1, 1) [1]. This

tail biting convolutional code is a (16,8) linear block code. In [4], a link between quasi-cyclic

codes and tail biting convolutional codes was also established. This link led to the most

recent generalization of tail biting trellis representations of linear block codes by Calderbank,

Forney and Vardy [6].

Tail biting trellis representation of a linear block code can significantly reduce the overall

state and branch complexities of its conventional trellis representation, especially for long

codes. Figures 2 and 3 depict a minimal 8-section conventional trellis and a minimal 8-sectlon

tail biting trellis for the (8,4,4) Reed-Muller (RM) code, respectively. The conventional

trellis for this code has a total of 34 states and a total of 44 branches. The maximum state

complexity(maximum number of states) is 8 which occurs at section boundary locations 3
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and 5. The tail biting trellis for this code has two starting states, two ending states, a total

of 30 states and a total of 40 branches. The maximum state complexity is 4. For this short

code, the reduction in trellis state and branch complexities is small. Consider the (24,12,8)

Golay code. This code has a minimal 12-section conventional trellis with a total number of

1,066 states and a total number of 1,960 2-bit branches. The maximum state complexity

is 256 [7, 8]. However, this code has a 12-section regular tail biting trellis with 16 starting

states and 16 ending states [6]. The number of states at each section boundary location is

16. Figure 6 shows the first 4 sections of the tail biting trellis for the code. It has a total

of 208 states and a total of 384 2-bit branches. The maximum state complexity is 16. We

see that tail biting trellis representation of the (24,12,8) Golay code results in a significant

reduction in both state and branch complexities compared with the conventional trellis

representation. The reduction in state and branch complexities of a code trellis results in

a reduction of decoding complexity of a trellis-based decoding algorithm. General structure

and construction of tail biting trellises for linear block codes have been further investigated

lately [9-12].

As pointed out earlier, a path in a tail biting trellis is a valid codeword if and only if its

starting and ending states are the same. Since there are multiple starting states, a trans-

mitted codeword can start from any of its starting states which is unknown to the receiver.

Therefore, any tail biting trellis-based decoding algorithm must have a mechanism to esti-

mate the starting state for each transmission of a codeword. A simple minded maximum
I"

likelihood decoding (MLD) algorithm is to treat a tail biting trellis with M starting states

and M ending states as a union of M subtrellises, each subtrellis consists of the paths that

connect a starting state and its corresponding ending state [4]. Each subtrellis is then a

conventional trellis. Process each subtrellls with the conventional Viterbi algorithm and de-

termine its survivor. This results in M survivors, one for each subtrellis. Then compare these

M survivors. The one with the best metric (the largest correlation metric or the smallest

Euclidean distance metric) is then the most likely (ML) codeword and the decoded codeword.

3
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This simple minded MLD algorithm requires to process M subtrellises independently and

then compares M survivors to make a decoding decision. If M is large, the computational

complexity can be very large. If a single decoder is used, it also results in long decoding

delay. If M decoders are used to process the M subtrellises in parallel, this reduces the

decoding delay but increases the hardware complexity. To reduce the decoding complexity,

several suboptimal iterative Viterbi-type algorithms for decoding codes based on their tail

biting trellises have been proposed [5,13-18].

In this paper, two new iterative algorithms for decoding codes based on their tail biting

trellises are presented, one is an unidirectional wrap-around algorithm and the other is a

bidirectional wrap-around algorithm. In these algorithms, both cumulative state metric and

path metric are used to determine surviving paths and the final survivor. During the decod-

ing iteration process, the decoder continues updating the best surviving path until certain

termination condition is met. Both algorithms are computationally efficient and achieves

virtually optimum error performance with a small number of iterations, say 2 to 4, for al-

most the entire range of signal-to-noise ratios (SNR) for many codes being simulated. They

outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm

also reduces decoding delay. Also presented in this paper is a simple method for constructing

tail biting trellises for linear block codes.

2 Prelhninary and Review

This section first provides some needed background information regarding tail biting trellises

for linear codes and then gives a brief review of existing algorithms for decoding codes based

on their tail biting trellises.

Let T be an L-section tail biting trellis for a binary linear code C with section boundary

locations indexed by 0, 1, 2,..., L. These boundary locations also serve as time indices [2, 3,

4
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7, 8]. For0<t<L, let

z,(c) = (1)

denote the state space of the tail biting trellis T at boundary location-t (or time-t), where

q, = lEt(C)[. Then Eo(C) and EL(C) are the starting and ending (or final) state spaces of

T, respectively, and

Zo(C)= EL(C), (2)
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i.e., Eo(C) and EL(C) consists of the same set of states. Hence, qo = qL. For 1 < i < qo

(or qt,), s0.i and SL,i are the same state. A tail biting trellis for a convolutional code is

time-invariant and the state spaces at all the boundary locations are the same, i.e.,

Zo(C)= s,(c)= ... = ZL(C). (3)

Figure 1 displays the time-invariant property of a tail biting trellis for a 4-state convolutional

code. However, a tail biting trellis for a linear block code is in general time-varying, i.e., for

0 <_ i,j < L and i ¢ j, Ei(C) and Ej(C) may not be the same. For example, the minimal

8-section tail biting trellis for the (8,4,4) RM code shown in Figure 3 is a time-varying tail

biting trellis.

The tail biting trellis T may be viewed as a union of qo subtrellises [4, 12]. Each subtrellis

consists of those tail biting paths in T that connect a state So.i at boundary location-0 to the

same state aL,i at boundary location-L, i.e., the starting and ending states of each subtrellis

are the same. For example, the tail biting trellis shown in Figure 1 consists of 4 subtrellises,

and the tail biting trellis for the (8,4,4) RM code shown in Figure 3 consists of two subtrellises.

The tail biting paths of the subtrellis To of T which contains the all-zero path actually form

a linear subcode Co of C [2, 11, 12]. As a result, the other subtrellises of T are the trellises

for the cosets of Co in C. Therefore, the q0 subtrellises of T are structurally identical (or

isomorphic). All these subtreltises share a common part from certain boundary location-

tl to certain boundary location-t2 with tl < t2 [2, 12]. For example, the 4 sul_trellises of
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the tail biting trellis shown in Figure 1 share a common part from boundary location-2 to

boundary location-6, i.e., they share 4 common trellis sections. The two subtrellises of the

tail biting trellis for the (8,4,4) RM code shown in Figure 3 share 4 common trellis sections

from boundary location-2 to boundary location-6.

Representing a linear code C by a tail biting trellis T with q0 starting states and qz

ending states with q0 = qz, a transmitted codeword may start from any of the q0 starting

states. If a tail biting trellis based algorithm is used for decoding C, the decoding algorithm

must first estimate the starting and ending states of the transmitted codeword and then

determines the most likely codeword that connects the estimated starting and ending states.

The simple minded tail biting trellis based MLD described in Section 1 requires to process

q0 subtrellises with the Viterbi algorithm independently. For simplicity, we call this Viterbi-

type tail biting trellis based MLD as the VTMLD algorithm. Define the Viterbi processing

of a trellis of L section as a Viterbi trial (VT) and the processing of one trellis section

(including all the addition, comparison and selection operations) as a Viterbi update

(VU) [16]. Then the VTMLD algorithm requires a total of qo VT's and a total of qoL VU's

to make a decoding decision. For large q0 and L, the VTMLD algorithm results in a large

computational complexity.

To overcome the computational complexity problem

Viterbi-type suboptimal decoding algorithms have been

of the VTMLD algorithm, several

proposed [13-18]. All these decod-

ing algorithm_ are iterative in nature and they process the tail biting trellis T of a code

with the conventional Viterbi algorithm repeatedly until certain stopping conditions are met

or a preset maximum number of decoding iterations is reached. The differences between

these suboptimal decoding algorithms are their starting conditions, termination conditions,

methods for estimating the starting state, and methods for selecting the decoded codeword

(or sequences). All these suboptimal decoding algorithms require much less VU's (or VT's)

than the VTMLD algorithm at the expense of some performance degradation.

The first and the simplest suboptimal algorithm for decoding a code based on its tail
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biting trellis T is the Bar-David algorithm [5] which estimates the starting state based on a

probabilistic approach. It consists of the following steps:

1) Choose an arbitrary starting state from IEo(C).

2) Process the tail biting trellis T with the Viterbi algorithm to find all the survivors

originated from the selected starting state to all the ending states in EL(C).

3) Select the survivor with the best metric among all the survivors as the winning path.

4) Check if the winning path is a tail biting path. If so, stop the decoding process and

output the winning path as the decoded codeword. Otherwise, go to the next step.

5) Use the ending state of the winning path as a new starting state.

6) Check if this starting state has been used before. If so, go to Step 1), otherwise, go to

step 2).

The above process continues until a winning tail biting path is found or the number of

iterations reaches q0. For the later case, the decoder simply outputs the best winning path

at that time. If the winning path is not a tail biting path, it is not a valid codeword. The

Bar-David algorithm is indeed very simple but has a significant performance degradation

compared to the VTMLD algorithm, especially for low to medium SNR's. Even though, for

large SNR, the average number of decoding iterations (or VT's) required is small. However,

for small SNR, the number of decoding iterations required approaches q0, which results in a

large number of computations.

An improvement of Bar-David algorithm is the two-step algorithm devised by Ma and

Wolf [5]. The first step of this algorithm is to obtain an ordered list of the q0 starting states

using an algebraic method called "continued fractions." The second step of this algorithm

is to perform Viterbi trials using each entry in the list as the starting state. At the end

of each Viterbi trial, check whether the winning path is a tail biting path. If so, stop
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the decoding process and output the winning path as the decoded codeword; otherwise,

continue the iteration process with the next state on the list as the starting state. This two-

step algorithm provides some improvement in performance and decoding complexity over

the Bar-David algorithm, but it still requires a large number of Viterbi trials for small SNR.

To further improve the performance of Bar-David and Ma-V_blf's two-step algorithms

and reduce their decoding complexities, Wang and Bhargava [13] proposed another iterative

decoding algorithm. This algorithm starts processing the tail biting trellis T with the Viterbi

algorithm from all the states in Eo(C) with the same initial state metrics. Every state in

Eo(C) is equally likely regarded as the starting state of the transmitted codeword. When

the processing reaches the end of the tail biting trellis T, tests are performed. Based on the

results of these tests, the decoder either terminates the decoding process and outputs the

best tail biting path that has been found or reduces the starting state space by eliminating

those unlikely starting states and updates the candidate tail biting path (the candidate for

the decoded codeword) that is stored in a buffer. For the latter case, the decoder processes

the tail biting trellis T again with the states in the reduced starting state space as the starting

states with the same state metrics. This iterative process continues until either the most

likely tail biting path is found or the reduced starting state space is empty. Wang-Bhargava

algorithm is asymptotically optimal, which improves the error performance of Bar-David

and Ma-Wolf algorithms with reduced decoding complexity. However, this algorithm is

quite complex, with a number of test conditions and a variable workload. Even though,

it is asymptotically optimum for high channel SNR, however, it performs relatively poorly

compared to the VTMLD algorithm for low to medium SNR's. One reason for its poor

performance for low to medium SNR's is that the algorithm does not transfer all available

soft information from trial to trial (or from one iteration to the next iteration). For example,

at each decoding iteration, all the starting states are assigned the same starting metrics.

However, the metrics of the states in the reduced starting state space computed at the end

of the previous Viterbi trial can be used as the starting state metrics for the current trial.
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This would allow the real starting state to gain momentum faster than the other states in

the reduced state space. As a result, the iteration decoding process may converge faster.

To improve the performance of the Wang-Bhargava algorithm, several algorithms were

devised based on continuous Viterbi processing of a trellis which is a multifold repetition

(or concatenation) of the tail biting trellis T [14-16]. All the available soft information is

transferred from one Viterbi trial to the next Viterbi trial. The state metrics at the end of

one trial are used as the starting state metrics for the next trial. Among these algorithms, the

most efficient one is the circular Viterbi (CV) algorithm devised by Cox and Sundberg [16].

Let T" = T o T o... denote the multifold repetition of T where o denotes the concatenation

operation. The CV algorithm simply processes the extended trellis continuously with the

Viterbi algorithm. Let t and to be two nonnegative integers such that 0 <: to _< L and

t = to (modulo L).

Then

E,(C) = E,o(C). (4)

At boundary location-t of T', let M(t, i) denote the metric of state st,i (this is simply the

cumulative metric of the survivor that terminates at state st,i). The CV algorithm consists

of the following steps:

1) Start fr&n all the states in E0(C) with the same initial state metrics.

2) Apply the Viterbi algorithm continuously to process T" section by section. At level-t

(or boundary location-t), record the metric of the surviving path entering each state

in Et(C) and save the information labeling bits of the surviving branches in a word,

called the decision word for section-t.

3) After processing the first L sections of T', the decoder starts making decoding decision.

m
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4) For some chosen small e and some constant a, if

[M(t,i)- M(t- L,i)-a[ < e (5)

for 1 < i < qt, stop the decoding process and output the winning path between level-

(t - L) and level-t (a reordering of the decoded information bits may be needed).

Otherwise, go to Step 2).

5) Repeat Steps 2 and 4 until the stopping condition of (5) is met or a maximum number

of iterations Ima_ is reached.

With this algorithm, a large storage is required to store all the state metrics over a span

of L + 1 sections. To simplify this algorithm, the following stopping rule was suggested [16]:

4") Check the decision words separated by L sections. If m consecutive decision words are

the same as their predecessors, the decoding process stops. Otherwise, go to Step 2).

Simulation results show that the two CV algorithms with stopping conditions 4 and 4",

respectively, perform almost equally well in terms of error performance and computational

complexity. Simulation results also show that the CV algorithm performs better than the

Wang-Bhargava algorithm for small to medium SNR's with significant reduction in decoding

computational complexity. However, for large SNR, the Wang-Bhargava algorithm outper-

forms the CV algorithm. Both algorithms still have a significant performance degradation

compared to the VTMLD algorithm.

The other two continuous Viterbi decoding algorithms [14, 15] based on processing T*

have similar features as the CV algorithm.

3 A Wrap-Around Viterbi Algorithm

This section presents a new iterative algorithm for decoding linear codes based on their tail

biting trellises. This algorithm is also devised based on processing a tail biting trellis T

10
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repeatedly in a continuous manner with the Viterbi algorithm. Each Viterbi processing (or

Viterbi trial) of T is called an iteration. The algorithm consists of a sequence of decoding

iterations. The available soft information is transferred from one iteration to the next itera-

tion. The algorithm starts the decoding process from all the states in IEo(C) with the same

initial state metrics at the first iteration. At the end of each iteration, if no decoding decision

is made, the metrics of the ending states in EL(C) are used as the starting state metrics

of the next iteration. This is called wrap-around. The wrap-around process results in a

continuous Viterbi decoding over the tail biting trellis T. The wrap-around processing of

T continues until certain stopping conditions are met. The algorithm uses cumulative path

metric during the continuous wrap-around process to select the survivor into each state.

However, at the end of each iteration, it uses the metric difference between a starting state

in Eo(C) and an ending state in EL(C) (if they are connected by a survivor) to determine

the L-branch winning path for decoding decision. The decoding process stops if the winning

path is a tail biting path in T (a codeword in C) or a maximum number of iterations is

reached. Decoding decision is made at the end of each iteration. If no decoding decision in

made at the end of an iteration, a candidate for the final decoded codeword is updated and

stored. For simplicity, this iterative decoding algorithm is referred to as a wrap-around

Viterbi (WA-V) algorithm.

U

w

m

t 1
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3.1 Thealgorithm

Assume that the correlation metric is used as the decoding metric. Again let T be an L-

section tail biting trellis for a linear code C with starting state space Eo(C), ending state

space EL(C) and E0(C) = EL(C). For 0 < t < L, let E,(C) = (s,A,s,,2,...,s,.q,) denote

state space of T at section boundary location-t. Since the WA-V algorithm processes T

repeatedly with the Viterbi algorithm in a continuous manner, the metric of a state in T is

updated during each iteration. A survivor terminated at a state in T at boundary location-t
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during the i-th decoding iteration is a surviving path originated from a starting state in

E0(C) at the beginning of the first decoding iteration. For i >_ 1, 0 < t < L and 1 < k < qt,

let ,,-40 denote the metric of state st,k at the i-th decoding iteration which is defined as
V t,k

the cumulative path metric of the survivor of the i-th iteration terminated at state st,k. At

the end of the i-th iteration, let pIi) denote an L-branch surviving path that connects the

starting state s0,h in Eo(C) and the ending state SL,j in EL(C). The path metric of p(i)

p(i) and
denoted Ape,), is defined as the following difference between the metric _L,./ of state st,j

the metric r'(i) of state s0,h:_JO,h

Ap(O a p(i) r(') (6)= ""L,j -- vO,h"

The L-branch path with the largest path metric among all the qL(= qo) surviving L-branch

paths in T at the end of the i-th decoding iteration is called the best path, denoted _(i}Pbest"

Note that the best surviving path is not necessarily a tail biting path in T (or a codeword in

C). If ,.,(0 is a tail biting path, decoding stops and the decoder outputs _'be,t as the decodedl_best

codeword. If _(i) is not a tail biting path, the decoder finds the best surviving tail bitingPbest

path, denoted ,.,(0 among all the surviving tail biting paths (if any) at the end of the i-thIJT,best,

iteration. Use ,.JO and ,dO to update the currently stored best path pbest and best tail
l-'best l"T,best

biting path PT,best. Whenever "di) ,.,(0 decoding stops. When a maximum number ofl"T,best --" l"best,

decoding iterations is reached, the decoder outputs PT,btst if it exists, otherwise, the decoder

outputs Pbest. Let Abe,t and AT,be,t denote the metrics of pbest and PT.be,t, respectively. Then

the decoder n_eds to update and store (pbest,Abest) and (PT,best, AT,best) from iteration to

iteration.

At the end of the i-th decoding iteration, if no decoding decision is made, the state metric

vector

a  c(O p(o • c (°) (7)k L,I'VL,2'" '' L,qL

is used as the initial state metric vector for the (i + 1)-th iteration, i.e., C(0_+1) = C(_ ). The

WA-V algorithm can be formulated as follows:

12
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1) Initialization - start from all the states in E0(C) with the same initial state metric.

2) For 1 _ i _< I,,,_, execute the i-th decoding iteration with C_ 0 = C(_ -_) (C(L°} is the

intial state metric vector). At section boundary location-L of T, compare the metrics

of all the Ubranch surviving paths that terminate at the ending states in Y-,L(C). Select

_(0
the best path Pb,,t as the winning path of the i-th iteration. If -(;)Pb¢,t is a tail biting

path, go to Step 4). Otherwise, update (Phi,t, Abe,t) and go to Step 3).

,.,(i)
3) Find the best surviving tail biting path v:r,b¢,t'(O(if any). Compare the metrics of v_',s,,t

and PT.best and update (PT.bc,t, Apt.n,,,). Check whether i < I_. If so, set i = i + 1

and go to Step 2). Otherwise, go to Step 5).

4) Output ,.(i)vb_t as the decoded codeword.

5) Output pT,b_,t as the decoded codeword if it exists. Otherwise, output p_,_ as the

decoded word.

Figure 7 depicts the flowchart of the above WA-V algorithm.

At the beginning of the V_\_-V decoding, each initial state is treated equally with the same

starting metric due to our ignorance of the real starting state of the transmitted codeword.

After several iterations, different initial states may have different state metrics. A path

stemming from an initial state with larger metric has a better chance to become the winning

path than the'ones stemming from the initial states with smaller metrics. The larger metric

an initial state has, the more likely it is the real starting state of the transmitted codeword.

3.2 Analysis

Let C_ denote the set of all paths in T that connect the states in _0(C) and the states in

EL(C) (i.e., from any state in Eo(C) to any state in _,L(C)). Then C, is a super code of C.

The WA-V algorithm is characterized by a number of theorems given below.
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Theorem 3.1 If all the starting states in Eo(C) at the beginning of the i-th iteration of the

WA-V algorithm have the same initial state metrics, then the best L-branch surviving path

p(1) at the end of the i-th iteration has the largest metric among all the codewords in Cs forbest

,-,{0 is the most likely codeword,_{i) is a tail biting path in T, t-'besta given received sequence r. If r'bea

in C with respect to r.

Proof: First we note that at the end of the i-th iteration, each survivor terminated at a state

in EL(C) has a larger cumulative path metric than its competitors at any state boundary

location-t of T for 0 _< t < L. If all the states in Eo(C) have the same initial state metric

at the beginning of the i-th iteration, it follows from the definition of path metric of an

L-branch path p(i) given by (6) that the best L-branch surviving path -(i}Pbest must have the

largest metric among all the paths in T (or all the codewords in C,) with respect to the

received sequence r. If r'b,,t"(0is a tail biting path, it is a codeword in C and hence the most

likely codeword in C for the given received sequence r. This proves the theorem. AA.

Since all the states in E0(C) have the same initial state metrics at the beginning of the

first iteration, a direct consequence of Theorem 3.1 is Corollary 3.1.

Corollary 3.1 At the first iteration of the WA-V algorithm, the best L-branch surviving

path ,,(1) is the most likely codeword in Cs. " C1}U Pb_s_ is a tail biting path, it is the most likely
l"best

codeword in C.

r_

From Corollary 3.1, we see that if decoding is done at the end of the first iteration of

WA-V algorithm, the decoder output is the most likely codeword in C.

Theorem 3.2 For i > 1, if the states in Eo(C) do no have the same initial metrics at the

beginning of the i-th iteration, the best surviving L-branch path t-'b_,t"(i}may not be the most

likely codeword in C, and hence it may not be the most likely codeword in C even if it is a

tail biting path in T.
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Proof: Recall that the selection of the survivor at a state is based on the cumulative path

metric up to that state. From (6), we have

CI0 t-C0 (8)L,j = "-"O,h -_- Ap(i).

It follows from (8) that for i > 1, a path with a larger path metric Ape,) can be discarded by

the WA-V algorithm in favor of a competitor which originates from a state in _0(C) with a

larger state metric, if the difference between their path metrics is not enough to compensate

for the difference between their initial state metrics. In this case, the best surviving L-branch

path ..(0 is not the most likely codeword in Co and hence it may not be the most likelyl-'best

codeword in C even if it is a tail biting path. AA.

Theorem 3.2 says that for i > 1, if the decoding is made at the end of the i-th iteration,

the decoder output may not be the most likely codeword in C. This implies that the WA-V

algorithm is not an optimal MLD algorithm. However, simulation results show that this

algorithm achieves near optimum error performance with only 2 to 4 iterations for many

codes (block or convolutional). It outperforms all the existing iterative algorithms described

in Section 2 with smaller computational complexity.

3.3 Performance and complexity

The WA-V algorithm has been applied to decode various block and convolutional codes

based on their tail biting trellises. Simulations results for the AWGN channel show that this

algorithm achieves near optimum MLD error performance for all the codes being decoded

with a maximum number I,_, of 2 to 4 iterations. For convolutional codes with L > 6m

where m is the memory order, Imp, = 2 is enough for the WA-V algorithm to achieve

near optimum error performance. The WA-V algorithm requires much less computational

complexity than the optimum VTMLD algorithm. Simulation results for several codes are

given in the following to demonstrate the effectiveness of the WA-V algorithm.

Figure 8 compares the error performance of the WA-V algorithm with that of the other ex-
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isting algorithms described in Section 2 for the (64,32) tail biting code obtained by truncating

the rate-l/2 (2,1,7) convolutional code of memory order m = 7 with generator polynomials

(712,476)(or generator sequences gl = (1,1,1,0,0,1,0,1) and g2 = (1,0,0,1,1,1,1,1)) [1].

The tail biting trellis for this code has L = 32 sections and 128 states at each section bound-

ary location. Since for the other existing algorithms, simulations were performed over a

binary symmetric channel (BSC), we compare the WA-V algorthm with these algorithms

based on a BSC. From Figure 8, we see that the WA-V algorithm outperforms all the exist-

ing algorithms. It achieves virtually optimum error performance with a maximum number

of iterations set to 4 and outperforms the Wang-Bhargava and CV algorithms by 0.2 dB at

BER's 10 -3 and 10 -4, respectively. It outperforms the Bar-David and Ma-Wolf algorithms

by 1.0 dB and 0.8 dB at BER=10 -3, respectively. Table 1 gives the decoding complexities of

various algorithms in terms of average number of Viterbi trials required for various SNR's.

It shows that the WA-V algorithm requires the least number of Viterbi trials, 1.3 on average.

The rest of simulation results for the WA-V algorithm given in the following are obtained

based on an AWGN channel. Figure 9 shows the bit error performance of the WA-V algo-

rithm for decoding the (128,64) tail biting code obtained by truncating the rate-l/2 (2,1,6)

convolutional code of memory order m = 6 generated by generator polynomials (554,744) [1].

The tail biting trellis of this code has L = 64 sections and 64 states. We see that the WA-V

algorithm achieves virtually optimum error performance with the maximum number I,,,_

of iterations set to 2. The average number of iterations required is 1.33 for SNR's over the

range 1.0 to 3.0 dB. The figure also shows that the algorithm converges very fast.

In [6], a 16-state tail biting trellis with 12 sections for the (24,12) Golay code has been

constructed (see Figure 6). Figures 10 and 11 show the bit and frame error performance of

the WA-V algorithm for decoding the (24,12) Golay code based on its 16-state tail biting

trellis. Again, both figures show that the WA-V algorithm achieves virtually optimum error

performance with the maximum number Im_ of iterations set to 4. With I_ set to 2,

there is only 0.2 dB performance degradation compared with MLD at BER=10 -4. Figure
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12 shows the average number of Viterbi updates versus SNR's. For I,_, = 4, it requires an

average of 17 Viterbi updates to complete the decoding process at SNR=3 dB.

A 64-state 12-section tail biting trellis for the (24,12) Golay code can be constructed

by truncating the 64-state trellis of the rate-l/2 (2, 1,6) convolutional code generated by

generator polynomials (414,730) with L = 12 [17, 18]. Figure 13 shows the bit error perfor-

mance of the (24,12) Golay code decoded with the WA-V algorithm based on this 64-state

tail biting trellis. Also included in this figure is the bit error performance of a modified

CV algorithm devised by Anderson and Hladik [17, 18], called the optimal circular Viterbi

algorithm (O-CVA) (This algorithm has not been publically reported and the simulation

results are provided by the authors.) We see that the WA-V algorithm with both I,_:_ = 2

and Imp, = 4 outperforms the O-CVA. The O-CVA requires 112 Viterbi updates to complete

the decoding for each SNR. However, the average numbers of Viterbi updates required by

the WA-V algorithm with I,_, = 4 are 31.67 at 1 dB SNR, 25.65 at 2 dB SNR, 20.45 at 3

dB SNR and 16.2 at 4 dB SNR, respectively. For I_ = 4, the maximum number of Viterbi

updates required is 48. Therefore, the WA-V algorithm outperforms the O-CVA with less

computational complexity.

4 An Iterative Bidirectional Viterbi Decoding Algo-

W

m

==

m

L

W

= =

I

w

rithr 

All the algorithms, including the WA-V algorithm presented in the last section, for decoding

linear codes based on their tail biting trellises are unidirectional decoding algorithms which

process a tail biting trellis in one direction. It is possible to devise a bidirectional decoding

algorithm which processes a tail biting trellis from both ends simultaneously using two

decoders. If the bidirectional process is carried out properly, not only optimum or near

optimum error performance can be achieved but also the decoding delay can be shortened. In
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this section, such a bidirectional algorithm for decoding linear codes based on their tail biting

trellises is presented and is called an iteratlve bidirectional Viterbi (IBD-V) algorithm.

Consider an (n, k) code C with an L-section tail biting trellis T. Let v = (v,, v2,.-., v,_)

be the codeword to be transmitted. Before its transmission, it is permuted into v' =

(vl, v,_, v2, vn-1, ...). Let r = (rl, r,_, r2, r,_-l,.. ") be the received sequence. Before decoding,

r is decomposed into two sequences, r (1) = (rl,r2,'",r,) and r (2) = (r,,r,,_l,..-,rl). The

IBD-V algorithm processes the tail biting trellis T simultaneously from both ends (right and

left) with two Viterbi decoders based on the received sequences r (1) and r (2), respectively.

The decoders that process the tail biting trellis T from the left and right ends are called the

left and right Viterbi decoders, respectively. The state space E0(C) at boundary location-0

is the starting state space for the left Viterbi decoder and the state space EL(C) at boundary

location-L is the starting state space for the right Viterbi decoder. The decoding process

that the two decoders start from opposite ends, work through the trellis and reach to the

other ends is called a decoding iteration. The IBD-V algorithm consists of a sequence of

iterations. At the end of each iteration, the two decoders wrap around the tail biting trellis

T and then continue the decoding process. The metrics of states at each end of T are used

as the starting state metrics for the next iteration. At the beginning of the first iteration,

all the starting states in E0(C) and EL(C) have the same initial state metrics. During each

decoding iteration, the two decoders start to make decoding decision jointly as soon as they

meet. Iteratictn process continues until the most likely tail biting path is found or a preset

maximum number I,_ of iterations is reached.

Suppose the two decoders are executing the i-th iteration. For 0 < t < L and 1 < k < q,,

(._l,(i) pr,(i)
let '-'t,k and '-'t,_ denote the cumulative metrics of the state st,k at the boundary location-t

computed by the left and right Viterbi decoders at the i-th iteration, respectively. There

are two surviving paths terminating at the state st,k, one from the left end of the trellis

,./,(i) and ...,.(i)T and the other from the right end of T, denoted _'t,k vt,t , and are called left and

right surviving paths, respectively. The L-branch path obtained by concatenating the left
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_,.(i)
surviving path ,j,(i) and the right surviving path Pt,, is called a composite path (CP)_t,k

n¢'(0 A CP that has the same state at both ends is called a compositethrough st,k, denoted vt,k •

tail biting path (CTP). Let s0,h and sL6 denote the starting states of the left surviving

,.,r,( i)
path ptt:(i) and the right surviving path J't.k , respectively. Define the metric differences

AI,(i) apt,(O rl,(i),,k = -  O,h , (9)

p,,(,) [,jo (10)t,k -- _"_t,k -- C

t,(i) and ,,(i)as the path metric gains of the left and right surviving paths, vt,k Pt,k , respectively.

Then the path metric of the CP through the state s,,_ is defined as

Ac,(i) zx ,xt,(i) A,,(i) (1 I)
t,k --" _'at,k "_ _'at,k "

As soon as a state st,k has been visited by the two Viterbi decoders from opposite direc-

tions during the i-th iteration, the metric of the CP through this state is computed. The

CP at boundary location-t that has the largest metric is called the best CP of the i-th

_.(1) _.(0
iteration at the boundary location-t, denoted Pt,b_,,. Let '-',,b,,t denote its metric. Let Pb,,,

and A_,,t denote the best composite path and its metric that have been found and stored

.._,(i)
up to the moment that vt,b.,, is found. If decoding decision is not made at this moment,

_t,b_,t,_t,b_tJisthen used to update (p_,t,A_,). The pair (Pb_,,A_,,) are updaded each

time when each of the two decoders has completed processing one section of the tail biting

trellis T in opposite directions. If there are CTP's at the boundary location-t, the CTP that

has the largest metric is called the best CTP of the i-th iteration at boundary location-t,

,,,,T,(i) AT'(/) denote its metric. Let T AbestTPb_,,and denote the best CTP anddenoted l"t,be,t" Let _..at,best

its metric that have been found and stored up to the current moment. If decoding decision

, T,(i) AT,(/)_ is used to update T T(p_,.,,Ab_.t). Theis not made at this moment, the pair [Pt,best, "_t,bestl

(Pb_a, is the two decoders move in opposite directionspair T TAb_,t ) updated continuously as

one section at a time.

The two decoders process the tail biting trellis T continuously section by section. When

they reach the opposite ends of T, they wrap around and start the next iteration. The two
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decoders collaborate to make a decoding decision. A decoding decision is made when the

best CP found by the two decoders is a tail biting path in T or when a preset maximum

Pbestnumber of iterations, I,,,_, is reached. For the latter case, the decoder outputs T (if any),

otherwise outputs P_e,t (this is not a codeword in C).

4.1 The algorithm

During each decoding iteration, the two decoders execute a procedure to find the best CP and

the best CPT at each boundary location of T to make a decoding decision. The procedure

to be executed is called the Find-Best(t) procedure. We use flag = 1 to indicate that

the best CP is found to be a tail biting path, and flag = 0 otherwise. The Find-Best(t)

procedure at the i-th iteration consists of the following steps:

Ac'(i) for all the states st,k in Et(C).a) Compute _t,k

,. _,(i)
b) Find the best composite path v,,_,t at location-t.

,. c,(i) ,.,_.(i)
c) If l-'t,be,t is a tail biting path, set flag = 1 and output l-'t,best as the decoded codeword.

Otherwise, update (P_,,t, A_,,t) that are stored in the memory and go to step d.

(Pb,,_, Ab,,_)..T,(i) (if any), update the pair T Td) Find the best composite tail biting path, vt,b,,t

that are stored in the memory.

Set the maximum number of iteration to Imp.. The IBD-V algorithm consists of the

following steps:

A. Set i = 1.flag = 0, C_ 0) = C_ (') = (-c_,-oo,...,-oo) (initial state metrics at both

e T
ends of T), and Abest -- Abest = --00.

B. If i < I,,_ and flag = 0, execute the following steps:

1) Perform the Viterbi decoding process from both ends of the trellis.

2O
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2) When the two decoders meet at boundary location-to, set t: = tr - to.

3) Call and execute the Find-Best(t0) procedure. If flag = 1, stop the decoding

process. Otherwise, go to Steps 4 and 5.

4) Set tt = tl + 1. If t_ _< L, call and execute the Find-Best(tt) procedure.

5) Set tr = tr + 1. If t_ > 0, call and execute the Find-Best(t_) procedure.

6) Repeat Steps 4 and 5 simultaneously. If flag is set to 1 by either decoder or by

both, decoding stops. For the latter case, the two best composite paths found at

boundary location-_t and -t_ are both tail biting paths. If they are not the same,

the one with larger metric is chosen as the decoded codeword. If flag = 0, update

Ab_t) and Steps 4 and 5.(Phi,t, repeat(p_,,_, A_,,t ) and r T

7) When the two decoders reach both ends of the trellis, check if i < I._o=. If so,

set i = i + 1, C_; (0 = "-'LC't'{i-1),C_ (/) --- C0 '(/-1), go to Step B and start the next

iteration. Otherwise, go to Step C.

C. If Ab,,tT > --oe, output Pb,,tT as the decoded codeword; Otherwise output Pb,,t-

_--.=_
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4.2 Analysis

Again, let C_ be the super code of C which consists of the label sequences of all the paths in

T as codewor_ls. Assume that transmission is over an AWGN channel. The path in T that

has the largest correlation metric with the received sequence r is the most likely codeword

in C, and is called the optimum path, denoted popt. If popt is a tail biting path, it is the

most likely codeword in C. In the following, we prove several theorems which characterize

the IBD-V algorithm.

Theorem 4.1 If at the beginning of a decoding iteration of the IBD-V algorithm, all the

starting states in Eo(C) for the left decoder have the same initial state metrics and all the

21

m
w



u

l

mIm

m
w

W

w

m

m

i

m

u

w

m

starting states in EL(C) for the right decoder have the same initial state metrics, the optimum

path Popt will not be discarded by the decoders during the decoding process.

Proof: Since all the starting states at each end of T have the same initial state metrics, it

follows from (6) that the path terminating at a state st,k at boundary location-t which has

the largest path metric also has the largest cumulative path metric. A path p in T can be

discarded by either the left decoder or the right decoder or by both. Suppose the optimum

path pop_ for a given received sequence is discarded at a state st,_ at boundary location-t.

If it is discarded by the left decoder, the left survivor into state st,k from the left has larger

path metric than the part of the optimum path popt from its starting state in E0(C) to state

st,k. If it is discarded by the right decoder, the the right survivor into state s,k from the

right has larger path metric than the part of the optimum path popt from its starting state

in EL(C) to state st,k. Either case results in a composite path through state s:,k that has a

metric larger than the metric of popt. This is not possible since Popt has the largest metric

with the received sequence. Therefore, Popt will not be discarded by either decoder. A_.

A direct consequence of Theorem 4.1 is Corollary 4.1.

Corollary 4.1 If at the beginning of a decoding iteration of the IBD-V algorithm, all the

starting states in E0(C) have the same initial state metrics and all the starting states in

EL(C) have the same initial state metrics, the best composite path at each boundary location

of T is the optimum path. If the best composite path is a tail biting path, it is the most likely
v

codeword in C with respect to the received sequence r.

Note that at the beginning of the first iteration of the IBD-V algorithm, all the starting

states in both E0(C) and EL(C) are set with the same initial state metrics. It follows from

Corollary 4.1 that at the first iteration, the best composite path is found as soon as the two

decoders meet at the center of the trellis T and this best composite path is the optimal path

in T. If this optimum path is a tail biting path, then it is the most likely codeword in C and

the decoding is optimal.
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The next theorem simply says that if the condition of Theorem 4.1 does not hold, the

best composite path found at any section boundary is not necessarily the optimum path in T

for a given received sequence r. The proof of this theorem is similar to the proof of Theorem

3.2.

r_

Theorem 4.2 If at the beginning of a decoding iteration, not all the starting states in Eo(C)

or in EL(C) have the same initial state metrics, the best composite path found at any bound-

ary location of T is not necessarily the optimum path Port in T for a given received sequence

r, and hence it is not necessarily the most likely codeword in C even if it is a tail biting path.

= =
u

w

m

m

m

!

m

m

Theorem 4.2 implies that for i > 1, if decoding decision is made during the i-th iteration,

the decoded codeword is not necessarily the most likely codeword in C. Therefore, IBD-V

algorithm is not an optimal MLD algorithm. However, simulation results of this algorithm for

decoding many codes show that this algorithm achieves virtually optimum error performance

with a maximum of only two iterations.

After the first decoding iteration, in general, the starting states at either end of the trellis

T do not have the same initial state metrics. As a result, the sets of composite paths at

different boundary locations may be different. This fact can be proved readily and is given

in the following theorem.

Theorem 4.] At the i-th decoding iteration with i > 1, the sets of composite paths at

different boundary locations may be different.

This theorem implies that after the first iteration, the best CP's at different boundary

locations of the trellis T may be different and the best CTP's at different boundary locations

of T may be different. Therefore, to achieve good error performance, we must keep updating

Pbest and TPb,,t from section to section, because they are candidates for the decoded codeword

when the decoding process is terminated at the end of Im_=-th iteration.
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Since the trellis is processed by two decoders from both directions and the two decoders

start to make decoding decision as soon as they meet at the center of the trellis, the IBD-V

algorithm has a shorter decoding delay than an unidirectional iterative algorithm, such as

the WA-V algorithm. Furthermore, IBD-V algorithm updates its candidates for the decoded

codeword continuously section by section rather than waiting until the end of an iteration.

As a result, rPb,,t is chosen from a larger subset of tail biting paths of T than the WA-V

algorithm and hence has better chance to be the most likely codeword in C. Therefore, the

IBD-V algorithm achieves better error performance than the WA-V algorithm with the same

number of iterations and converges faster to the MLD performance.

4.3 Performance and complexity

The IBD-V algorithm has been applied to decode several convolutional and linear block

codes based on their tail biting trellises. Simulation results show that for all the codes

being decoded, the IBD-V algorithm virtually achieves optimum error performance with a

maximum of 2 iterations. Results for some of these codes are given in the following to show

the effectiveness of the IBD-V algorithm.

Figures 14 and 15 show the bit and frame error performance of the IBD-V algorithm for

the (64,32) tail biting code obtained by truncating the rate-l/2 (2,1,7) convolutional code

generated by polynomials (712,476). We see that the IBD-V algorithm virtually achieves

optimum erro_ performance with a maximum of 2 iterations (I,,,_, = 2). In the same fig-

ures, we see that the WA-V algorithm virtually achieves optimum error performance with a

maximum of 4 iterations (Im_x=4). Table 2 gives the percentages of transmitted codewords

that are decoded into the most likely codewords with IBD-V and WA-V algorithms for var-

ious SNR's. We see that even with SNR=I dB, the IBD-V algorithm decodes 93% of the

transmitted codewords into most likely codewords with I,_, = 1 and 99% with I,,,a, = 2.

The WA-V algorithm achieves almost the same percentages with I,_, = 2 and I,,,_: = 4,
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respectively. Table 3 gives the average numbers of Viterbi updates required for the two

decoding algorithms with various SNR's. We see that both algorithms requires relatively

small number of Viterbi updates to complete the decoding even for small SNR's.

Figure 9 shows the bit error performance of the IBD-V algorithm for the (128,64) tail

biting codes obtained by truncating the rate-l/2 (2,1,6) convolutional code generated by

polynomials (554, 744). Again, the IBD-V algorithm virtually achieves optimum error per-

formance with a maximumof 2 iterations. In fact, for this long code, WA_V is just as effective

as the IBD-V algorithm and it achieves optimum error performance with I,_= = 2. Table

4 gives the average numbers of Viterbi updates required for both algorithms with various

SNR's.

Figures 10 and 11 gives the bit and frame error performance of the IBD-V algorithm

for the (24,12) Golay code based on the minimal 16-state tail biting trellis constructed in

[6]. Again, we see that the IBD-V algorithm achieves optimum error performance with a

maximum of 2 iterations. Table 5 gives the average number of Viterbi updates for both IBD-

V and WA-V algorithms. We see that the number of Viterbi updates required for decoding

this code is small even for low SNR's.

Finally, Table 6 gives the computational complexities for decoding the above codes with

the VTMLD, WA-V and IBD-V algorithms, respectively. Also included in this table is a

recursive MLD (RMLD) algorithm for decoding codes based on their tail biting trellises.

This RMLD is simply a generalization of the RMLD devised in [19] for decoding linear block

codes based on their conventional trellises. We see that both WA-V and IBD-V algorithms

significantly reduce the computational complexity for these codes. The RMLD algorithm

also reduces the computational complexity compared with the VTMLD algorithm.

U

25

w



u

F_u

m

m

W

U
= =

M

u

5 General Structure and Construction of Tail Biting

Trellises for Linear Block Codes

5.1 General structure

The general structure of an L-section tail biting trellis T for an (n,/¢) linear block code

C is depicted in Figure 5. Let {0, 1,..., L} denote the set of section boundary locations.

Suppose T consists of 2" starting states and 2 = ending states. We may" view T as a union

of 2" isomorphic (or structurally identical) subtrellises which share a common part from

boundary location-tx to boundary location-t2, where tt < t2. Each subtrellis consists of

those paths in T that connect a state at boundary location-0 to the same state at boundary

location-L, and it has three parts, the header, the center span and the tail. The center span

is shared by every subtrellis. A subtrellis starts from a specific starting state at boundary

location-0 and grows until it reaches to the boundary location-t1, it then transverses through

the center span until it reaches the boundary location-t2, and finally it starts to collapse until

it terminates at a state at boundary location-L that is identical to the starting state. For

0 _< i < 2 =, let Ti denote the subtrellis whose starting and ending states are so,/and sL,i,

respectively. Assume that To contains the all-zero path. Then the paths in To form an

(n, k - rn) linear subcode of C, denoted Co, and the paths in any other subtrellis form a

coset of Co in C. Let v = (vl,v2,"" ,v,_) be a codeword in C. Since all the subtrellises have
it-

the same common span from boundary location-tl to boundary location-t2, there must be

a codeword w = (wl, w2, ..., w,,) in each subtrellis whose components from location-(tl + 1)

to location-t2 are zeros, i.e., wtl+l = wq+2 = -" = wt2 = 0. For convenience, we call the

part of first tl components of w the header, the part of last n - t2 components of w the tail.

Adding w to each path in To results in a subtrellis which is isomorphic to To and is identical

to To from boundary location-tx to boundary location-t2. The header and the tail of this

subtrellis are obtained by adding the header and the tail of w to the header and the tail of
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To, respectively. This subtrellis is the trellis for the coset w + C0 of Co and w is the coset

representative.

Although all the subtrellises share a common span from boundary location-t1 to boundary

location-t2. Two individual subtrellises may share a longer span starting from boundary

location-/to boundary location-j with 0 < i < tl and t2 < j < L. For 0 < i < j < L, let

[i,j] denote the interval {i,i + 1,...,j}. The zero-span of an n-tuple v = (vl,v2,...,v,)

is defined as the largest interval [i,j] such that v,+l = vi+2 = "" = v./ = 0. This definition

implies that vi = t,j+l = 1. Let v be a codeword in C but not in Co whose zero-span is [i,j]

with 0 < i < t_ and t2 < j < L. It is clear that [t_, t2] C_ [i,j]. Let T0(v) denote the subtrellis

for the coset v + Co obtained by adding v to every path in To. Then T0(v) and To have a

common span from boundary location-/to boundary location-j. Let v and w be codewords

in two different cosets of the partition C/Co. Let [il,jl] and [i2,j2] be the zero-spans of v

and w, respectively. Let [i3,j3] = [i_,j_]N[i2,j_]. Then the co-subtrellises, T0(v) and To(w),

are isomorphic and have a common span from boundary location-i3 to boundary location-j3.

m

m
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5.2 Construction

Based on structure analysis given above, a simple method for constructing tail biting trellises

for linear block code can be devised. For 0 < tl < t2 < L, let C(tl,t2) denote the set of

codewords in C which satisfy the following conditions: (1) each nonzero codeword v in

C(tl, t_) has zero components from location-(tl + 1) to location-t2, i.e., vt2+l = vtl+2 = "'" =

vt2 = 0, and (2) the part of first tl components of v contains at least one nonzero component

and the part of last n - t_ components of v contains at least one nonzero component. Then

C(t_, t2) is a linear subcode of C. The zero-span of each codeword in C(tx, t2) contains [tl, t2]

as a subinterval. Let m be the dimension of C(tx, t2). There exists an (n, k-m) linear subcode

Co in C such that C is the direct sum of Co and C(t_, t2). Let C/Co denote the partition of

C modulo Co. Then the vectors in C(tl, t2) can be used as the coset representatives of the
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coset in C/Co. C(tl, t2) is called the coset space of C/Co.

Let T0 be the minimal conventional (one starting state and one ending state) bit-level

trellis for Co [2]. Form all the co-trellises T0(v) of To with v E C(h,t_). All these co-

trellises have a common span from boundary location-t1 to boundary location-t2. Putting

all these co-trellises together and sharing maximum common spans between them, we obtain

a tail biting trellis with 2" starting states and 2"_ ending states. The overall (state and

branch) complexity of this tail biting trellis depends on the length of common span of the

co-trellises, the choice of the boundary locations, tl and t2, of the common span. These

parameters should be chosen to minimize the trellis complexity. If the minimum distance of

C is d, then the condition n - t2 + tl > d must be hold.

To facilitate the construction of a tail biting trellis for a linear (n, k) block code C, we put

its generator matrix G in tail biting trellis oriented form (TBTOF), called the TBTO

generator (TBTOG) matrix. The span of an n-tuple is defined as the smallest interval [a, b]

which contains all the nonzero components. The active span of v is defined as the interval

[a,b- 1]. For a vector v with zero-span [i,j], define its circular span as [j + 1,i]. In this case,

the leading '1' is at location-(j + 1) and trailing '1' is at location-i. The TBTOG matrix of

C is of the following form:

GTB= [ G°]Go ' (12)

where (1) Go is the generator matrix for the subcode Co, (2) Gc is the generator matrix for

the coset space C/Co, (3) no two rows of G have their leading "ones" in the same columns,

(4) no two rows have their trailing "ones" in the same column, and (5) the leading '1' of

each row in Go appears in a column before the leading '1' of any row below it. This TBTOG

matrix can be obtain by performing elementary operations of the rows of a given generator

matrix of the code. Go is in the conventional trellis oriented form and generates the minimal

conventional trellis To for the subcode Co [2, 3, 20]. From the TBTOG matrix GTB, we can

determine the state space dimension profile easily. At the state boundary location-i, the
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dimension pi of state space Ei is simply equal to the number of rows in GI"B which are active

at boundary location-/. Since the zero-spans of the rows in G_ contain the interval [q, t2] as

a subinterval and their circular spans are contained in the circular interval [t2 + 1, tx], these

rows are not active from boundary location-tx to boundary location42.

As an example, consider the 8,4,4) RM code generated by

11111111

00001111

00110011

01010101

By elementary row operations, we obtain the following TBTOG

GTB --"

matrix:

i 1110000

01011010

00001 11 1

  1000011 

(13)

The first three rows of GTB span the subcode Co and the fourth row g4 spans the coset space

C/Co which has dimension one. The length of the zero-span of g4 is 4 and its circular span is

[7,2]. Based on this TBTOG matrix, an 8-section tail biting trellis with two starting states

and two ending states can be constructed as shown in Figure 3. Note that at boundary

location-0 and boundary location-L, only the last row of GTB is active. The state space

dimension profile of the tail biting trellis is (1,2,2,2,1,2,2,2,1) and its state space complexity

profile is (2,4,4,4,2,4,4,4,2). To construct an 8-section bit-level tail biting trellis for this code,

we first construct the minimal conventional 8-section bit-level trellis To for Co. Adding the

fourth row g4 to the paths in To, we obtain the co-subtrellis T0(g4) for the only coset of Co.

The two co-trellises share a common span from boundary location-2 to boundary location-6.

Putting these two co-subtrellises together and sharing the common span, we obtain the tail

biting trellis as shown in Figure 3. This is a tail biting trellis for the (8,4,4) RM code and

it has different structure from the one constructed in [6]. It has mirror symmetry, i.e., the
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right-half of the trellis is the mirror image of the left-half of the trellis. If it is sectionalized

at boundary locations in {0,2, 4, 6, 8}, a 4-section tail biting trellis is obtained as shown in

Figure 4.

In [6], Calderbank, Forney and Vardy constructed the following generator matrix for the

(24,12) Golay code,

gl

g2
GTB =

g12

11 01 11 01 11 00 00

00 11 11 10 01 11 00

00 00 11 01 10 11 11

00 00 00 11 01 11 01

00 00 00 00 11 01 11

00 00 00 00 00 11 11

00 00 00 00 00 00 11

00 00 00 00 00 00 00

11 00 00 00_ 00 00 00

01 11 00 00_ 00 00 00
/

10 1I 11 00_ 00 00 00

01 11 01 111 00 00 00

00 00 00 00 00

00 00 00 00 00

00 00 00 00 00

11 00 00 00 00

01 11 00 00 00

10 01 11 00 00

01 10 11 11 00

11 01 11 01 11

00 11 01 11 01

00 :)0 11 11 10

00 30 00 11 01

(14)

00 DO 00 00 11

The first 8 rows of GTS form theThis matrix is already in the TBTOF given by (12).

submatrix Go which generates the subcode Co. Go is in the conventional trellis oriented

form [2, 3, 2ff]. By inspecting the active spans of the rows of Go, we readily find that the

state space dimension profile of the minimal 24-section bit-level trellis To for the subcode Co

is

(0, 1, 1,2, 2, 3, 3, 4, 4, 4, 4, 4, 4,4, 4, 4, 4, 3, 3, 2, 2, 1, 1,0).

The maximum state space dimension of this trellis is 4 and hence its maximum state space

has 16 states. If this trellis is sectionalized at the boundary locations in

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18,20,22,24}, (15)
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we obtained a minimal 12-section trellis for the subcode Co whose state space dimension

profile is (0,1,2,3,4,4,4,4,4,3,2,1,0). The last four rows of the TBTOG matrix GrB form the

submatrix Gc which spans the coset space C]Co. The zero spans of these last four rows

are [2,16], [4,18], [6,20] and [8,22], respectively, and they contain the interval [8,16] as the

common zero span. Therefore, To and its fifteen co-trellises share a common center span

from boundary location-8 to boundary location-16. In fact, by inspecting the zero spans of

these four rows, we can easily determine the common center span of any two co-trellises of

To. Putting To and its co-trellises together and sharing maximum common spans between

them, we obtain the 16-state 12-section regular (or uniform) tail biting trellis for the (24,12)

Golay code constructed by Calderbank, Forney and Vardy [6] as shown in Figure 6. By

determining the number of rows of the TBTOG matrix GrB that are active at the boundary

locations, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, we readily find the state space dimension

profile of the 12-section tail biting trellis for the (24,12) Golay code is (4, 4, 4, 4, 4, 4, 4, 4,

4,4,4,4).

Construction of the bit level tail biting trellis for C based on GrB can be accomplished

easily based on the state defining information set at each boundary location, and the change

of the state defining information set from one boundary location to the next boundary

location as described in [2]. The information bits in the state defining set A,' at the boundary

location-/ defines the state space lEi at boundary location-/ and the change of the state

defining information set from A_ at boundary locatio-i to the state defining information set

A_+ 1 at boundary location-(/+ 1) defines the state transitions. Labeling the states helps the

construction.

Let C'(tx, t2) be a linear subcode of C(tx, t2) with dimension m' < rn. A tail biting trellis

for C can be Constructed based on this subcode C_(t_,t2). Then the resultant tail biting

trellis has 2'" starting states and 2'" ending states. Based on linear subcodes of C(tl,t2),

we can construct various tail biting trellises.
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5.3 Tail biting trellises for RM codes

RM codes have relatively simple conventional trellis structure [2, 3, 7, 22] and can be

effectively decoded with trellis-based decoding algorithms, such as the Viterbi algorithm

and the MAP algorithm [23, 24]. In the following, we show that these codes also have

simple tail biting trellis structure and hence can be decoded effectively with the two new

iterative decoding algorithms proposed in the last two sections.

For any integers m and r with 0 < r < m, there exists a binary r-th order RM code,

decoded RM(r, m), with the following parameters:

Code length :

Dimension:

Minimum distance :

n= 24;

+(7)+...+(:);
dmi,, --- 2_-r.

For 1 < i < m, let vi be a 2_-tuple over GF(2) of the following form:

v, = (0__0, 1._1,0_0, • • •, 1,._1). (16)
21--1 2i--1 2i--I 2i--I

which consists of 2 _-i+1 alternate all-zero and all-one 2;-1-tuples. Let a = (al,a_,'" ,a,_)

and b = (bl, b2,'", bn) be two binary n-tuples. Define the following logic (boolean) product

of a and b,

a. b _ (al" bx,a2" b2,'",a," b,),

where "." denotes the logic product (or AND operation), i.e., ai • bi = 1 if and only if

ai = bi = 1. For simplicity, we use ab for a.b. Let v0 denotes the all-one 2_-tuple,

v0 = (1,1,...,1). For 1 <: il < i2 < "" < il < m, the product vector v,_vi2...v;_ is said to

have degree I. The r-th order RM code, RM(r, m), of length 2" is generated (or spanned)

by the following set of independent vectors:

{v0, vx, v2, • • •, v,,,, vxv_, vlv3," • •, v,,,-lv,,,, up to products of degree r}.
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If the vectors in this set are arranged as rows of a matrix, we obtain a generator matrix for

the r-th order RM code, denoted G,,_. It is possible to construct a tail biting trellis for the

r-th order RM code with a center common span of length 2 _-1 from boundary location-2 _-2

to boundary location-3 • 2 _-2. The lengths of the header and tail of each subtrellis are both

2 '*-2. The code vector v_ = v0 + v'* + v_-l, has the following form:

(,,
2m-2 2m-I 2Tn-2

If we replace v'* by v_ and form the following basis for the subcode C(2 "*-2, 3- 2 _-2) of the

r-th order RM code, RM(r, rn):

B(2 "*-2,3. 2 _-2) = {v_,,v_vx,..-,v_v'*_2,...,up to products of degree

r with v_, as a product component}

= {v_vh...v h : 1 _< ix < i2... < il _< m- 2

and 0<l<r-1}, (17)

&
where for 1 = 0, v_,vq ...v h = v_,. Then the subcode C(2 "*-2, 3.2 _-2) is spanned by

q_= (rno2)+(ml2)+...+(rm212) (18)

linear independent codewords, called coset generators in B(2 "*-_, 3.2 "*-_). Each generator in

B(2 "*-2, 3.2 m-2) has a sequence of 2"*-_ zeros from position-(2 "*-2 + 1) to position-3 • 2"*-2,

both the header and the tall of each codeword contain at least one nonzero component. In

constructing a tail biting trellis for the RM(r, rn) code with a common center span of length

2 _-1, we can use any subset of B(2 "*-2, 3.2 "*-2) to span the coset space for forming the

subtrellises (or to from the submatrix G_ in the TBTOG matrix Gre).

For rn = 3 and r = 1, the RM(1,3) code is the (8,4,4) RM code given above. B(2,6)

contains only one codeword which is (1, 1, 0, 0, 0, 0, 1, 1). The TBTOG matrix for this code

is given in (13).
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Consider the 2nd-order RM code, RM(2, 5), which is a (32,16,8) code. There are a total

of 4 generators in B(8,24) with a zero-span of length 16. They are:

11111111 0000000000000000 11111111

01011010 0000000000000000 01011010

00111100 0000000000000000 00111100

11110000 0000000000000000 00001111.

(19)

Suppose we want to construct a tail biting trellis with 8 starting states and 8 ending states.

We simply choose three generators from G_. A choice to minimize the trellis complexity is

desired. One choice gives the following TBTOG:

11111111000000000000000000000000

01010101101010100000000000000000

00110011110011000000000000000000

00010001111011101000100010001000

00001111111100000000000000000000

00000101111110101010000010100000

00000011111111001100000011000000

00000000111111110000000000000000
arB = (20)

00000000000000001111111100000000

00000000000000000101010110101010

00000000000000000011001111001100

00000000000000000000111111110000

00000000000000000000000011111111

01011010_000000000000000_1011010

oo ,, oo oooooooooooooo?o, ,,oo
11110000_000000000000000_0001111

The first 13 rows of GrB isin TOF and generate a (32,13)subcodeCo. The dimension ofthe

state space at the center point (boundary locatlon-16) ofthe bit-levelminimalconventional
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trellis To for Co is 3. The 7 nonzero linear combinations of the last 3 rows of GTB generate 7

co-subtrellises of To. The state space dimension profile of the tail biting trellis is: (3,4,5,6,6,

7,7,7,6,7,7,7,6,6,5,4,3,4,5,6,6,7,7,7,6,7,7,7,6,6,5,4,3). The total number of states and total

number of branches of this tail biting trellis are 2,392 and 3,392, respectively. The state

space dimension at the midpoint of this tail biting trellis is 3. The maximum state space

dimension is 7. However, the minimal conventional bit-level trellis with one pair of starting

and ending states for this code has a total of 4,798 states and a total of 6,396 branches. The

state space dimension at the midpoint of this conventional trellis is 6 and the maximum state

space dimension is 9. We see that the above tail biting trellis representation of the (32,16)

RM code reduces both the state and branch complexities by about one half. The number of

states at the midpoint of the tail biting trellis is the square root of the number of states at

the midpoint of conventional minimal trellis for the code. If we sectionalized the bit-level tail

biting trellis at locations in {0, 4, 8, 12, 16, 20, 24, 28, 32}, we obtain an uniform 8-section tail

biting trellis with state space dimension profile, (3,6,6,6,3,6,6,6,3). However, the state space

dimension profile of the corresponding conventional 8-section trellis is (0,4,6,8,6,8,6,4,0). The

TBTOG matrix given above meets the minimum sum of spans condition, and therefore the

tail biting trellis is minimal in terms of product of the state-space sizes [6].

For r = 2 and m = 6, the second-order RM code, RM(2,6), is a (64,22,16) code. The

conventional minimal bit-level 64-section trellis for this code has a total of 324,862 states

and a total of 375,036 branches. Its maximum state complexity is 214 and the number of
¥

states at midpoint (boundary location-32) is 2 l°. For this RM code, a bit-level 64-section tail

biting trellis with 8 starting states, 8 ending states and a center common span of length 32

can be constructed. This tail biting trellis has a total of 117,360 states and a total 136,672

branches. Its maximum state complexity is 212 and the number of states at midpoint is 2 T.

A tail biting trellis with 16 starting states and 16 ending states for this code can also be

constructed.

For any positive integer i such that m - r - 1 <_ i <_ m - 2, there exists a tail biting
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trellis for the RM(r, m) code with a center common span of length 2 _ - 2 i+t from boundary

location-2; to boundary location-(2 r_ -2 _) [12].

6 Conclusion

In this paper, two new efficient iterative algorithms for decoding linear codes, block or con-

volutional, based on their tail biting trellises have been presented. One is an unidirectional

algorithm and other is a bidirectional algorithm. Both algorithms achieve virtually optimum

error performance with a maximum of 2 to 4 iterations with a significant reduction in de-

coding computational complexity. For short tail biting convolutional codes, the bidirectional

algorithm converges to optimum MLD error performance faster and gives better error per-

formance than the unidirectional algorithm. For long tail biting convolutional codes, both

algorithms perform equally well and achieves virtually optimum error performance with a

maximum of 2 iterations. The bidirectional algorithm reduces decoding delay. Both algo-

rithms outperform all the existing tail biting trellis-based algorithms in performance and

decoding complexity. In the paper, a simple method for constructing tail biting trellises for

linear block codes has also been presented.
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Table 1: Decoding complexity of various decoding algorithms in terms of number of Viterbi

trials for the (64,32) tail biting convolutional code generated by g_ = (1, 1, 1,0, 0, 1,0, 1) and

g2 = (1,0,0, 1, 1, 1,1,1) over BSC.
SNR Bar-David Two-step Wang-Bhargava CVA WA-V

4.588

4.812

5.032

5.535

6.123

116.21 67.42 14.67

72.1 60.17 13.41

67.65 58.24 5.76

62.25 54.27 2.3

56.79 47.11 1.48

(I.,.. = 4)
2.23 1.43

2.20 1.35

2.15 1.32

2.08 1.21

2.01 1.13
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Table 2: Percentage of transmitted codewords that are decoded into most likely codewords

for the (68,34) convolutional tail biting code generated by polynomials (712,476) using the

WA-V and the IBD-V algorithms (minimum 10,000 transmitted codewords t.
WA-V IBD-V

SNR

1.0dB

1.5dB

2.0dB

2.5dB

3.0dB

71.65% 93.68% 95.98% 92.91% 98.66%

79,49% 97.65% 99.34% 95.11% 99.81%

84.44% 98.61% 99.54% 96.85% 99.72%

90.54% 99.67% 99.89% 98.71% 99.96%

94.13% 99.90% 99.95% 99.41% 99.99%

1-

w
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Table 3: Average number of Viterbi updates required for decoding the (68,34) convolu-

tional tail biting code generated by polynomials (712,476) using the WA-V and the IBD-V

algorithms.

SNR

1.0dB

2.0dB

3.0dB

4.0dB

5.0dB

WA-V

I,,_ = 2 I,,,,,=

53.02

49.61

45.90

41.84

39.17

=4

79.33

70.33

59.96

50.61

44.69

l rri a ,r "" 1

53.02

49.61

45.90

41.84

39.17

IBD-V

tacit' "-" 2

79.98

69.92

60.52

50.71

44.66

/fna2 _ 2

(per decoder)
39.99

34.96

30.26

25.35

22.33
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Table 4: Average number of Viterbi updates required for decoding the (128,64) convolu-

tional tail biting code generated by polynomials (554,744) using the WA-V and the IBD-V

algorithms.

SNR

1.0dB

2.0dB

3.0dB

4.0dB

5.0dB

WA-V IBD-V

I_== 2 Im_= 4 Im,,= = l I,_ = 2 I,,ax= 2

(per decoder)

99.17 145.16 99.17 137.09 68.55

92.18 125.92 92.18 122.36 61.18

83.46 103.99 83.46 103.27 51.64

77.69 92.89 77.69 91.46 45.73

73.17 82.90 73.17 82.35 41.17
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Table 5: Aver'age number of Viterbi updates required for decoding the (24,12) Golay code

with the 16-state tail biting trellis using the WA-V and the IBD-V algorithms.
WA-V IBD-V

SNR

1.0dB

2.0dB

3.0dB

4.0dB

5.0dB

I,,,a==2 Im=x=4 Ima_=l I,na_=2 l_a= =2
(per decoder)

17.79 26.04 17.79 26.42 13.21

16.02 21.26 16.02 21.60 10.80

14.24 16.88 14.24 17.12 8.56

13.09 14.25 13.09 14.35 7.17

12.43 12.87 12.43 12.90 6.45

4O

_m=_



Table 6: Decoding complexity in terms of number of additions and comparisons with various

decoding algorithms at SNR=I.0dB (10,000 blocks).
Code VTMLD RMLD

Golay (24,12) 9,615 3,379 1,383 1,668

(64,32)(rn= 6) 397,375 250,043 14,739 17,694

(128,64)(m = 6) 794,687 643,323 28,314 32,493

(68,34)(rn= 7) 1,679,999 1,000,251 32,493 39,761

m

Figure 1: An 8-section tail biting trellis for the rate-l/2 (2,1,2) convolutional tail biting code

generated by g, = (1,0, 1) and g2 = (1, 1, 1).
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Figure 2: A minimal 8-section conventional trellis for the (8,4,4) RM code.
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Figure 3: A minimal 8-section tail biting trellis for the (8,4,4) RM code.
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Figure 4: A 4-section tail biting trellis for the (8,4,4) RM code.
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Figure 5: General structure of a tail biting trellis.
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Figure 6: Four sections of the minimal tail biting trellis for the (24,12,8) Golay code.
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Figure 10: BER performance of the (24,12) Golay code with the 16-state tail biting trellis

using the WA-V and the IBD-V algorithms.
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Figure 11: FER performance of the (24,12) Golay code with the 16-state tail biting trellis

using the WA-V and the IBD-V algorithms.

47



w

m

_-2

m

m

N

m

W

m

m

m

m

m

I"1

' ' _ +',+v___ ;7
I _ " : __.__ mo-v,_._ !

='l" "_ ............... _0__ w,-v, -= |
I . _ wA-vJ..1

o_....._.i._ .....,........._+..+o-v,_.=_._I.

!+......:
: "_0,-. .,.: "

' .......: ............................i:- .... "'::::_- :-::i_
(5 I 1 I 1 I 1 I --'"

I I.$ 2 2.S 3 3,S 4 4.S
Eb_ o (dB)

Figure 12: Decoding complexity of the (24,12) Golay code with the 16-state tail biting trellis

using the WA-V and the IBD-V algorithms.
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Figure 14: BER performance of the (68,34) tail biting convoiutionai code generated by

polynomials (712,476) using the WA-V and the IBD-V algorithms.
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Figure 15: FER performance of the (68,34) tail biting convolutional code generated by

polynomials (712,476) using the WA-V and the IBD-V algorithms.
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